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Unbalanced optimal transport:

Finding an optimal plan to transport between two
measures with the same mass (OT) or different
masses (UOT) *.

=
|
'
I
I
I
\
-
tits
tiI3
c:z2
3

< g
\

!

|

i

\
P

zzzzz--

-2l

=

P, —
(a) (b)

UOT application: Modeling the growth and the UOT application: Image transfer [Yang and Uhler, 2019].
death of cells [Schiebinger et al., 2019].

https:/ /optimaltransport.github.io/slides/
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Unbalanced optimal transport: Formulation

e ac RY, b e R are two non-negative vectors with positive, constant
masses a = _;a;, 3 =) b;

e C € R*™ is a non-negative cost matrix
@ T is a positive constant

UOT problem
The unbalanced optimal transport (UOT) problem reads

min £(X):= (C,X) + 7KL(X1,||a) + TKL(X "1,]||b).
XeRPX™

RENEILS

When o = § and 7 — o0, this becomes the standard optimal transport
(OT) problem.
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Entropic UOT

@ Approximating the UOT problem: replace the positivity constraints
with an entropy barrier H(X) = 3771 Xj;(log(Xj;) — 1).

Entropic UOT Problem

The entropic UOT problem reads

min g(X) :=(C,X) —nH(X) + 7KL(X1,||a) + TKL(XT].ng).
XeRyX™

Property
For n > 0, the entropic UOT problem is strongly convex.
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Sinkhorn algorithm

Dual function
The solution to the entropic UOT problem is also the optimal solution of

the dual function

min h(u, v) _nzex <u’++_c’-’> +T<e_“/T,a>+T<e_V/T,b>'

u,veRn"

Let (u*, v*) = arg min, yern h(u, v), then the solution for the UOT

* ;C *
problem is given by X* = diag(e""/")e ™ diag(e" /"), where diag(x)
denotes the diagonal matrix with x on the diagonal.
@ The Sinkhorn algorithm optimizes the dual function by alternating

descent algorithm.
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—C
Denote B(u, v) = diag(e?/")e ™ diag(e"/").
Algorithm 1: UNBALANCED_SINKHORN

Input: marginals a and b, cost matrix C, accuracy e. 2000 — f
Set k=0 and u® = v0 = 0 and a predefined 7 1500 s opmat !
while not StoppingCondition(k) do 1600 1
ak = B(u*, vF)1,. 100
bk = B(uk, vk)Tl,,. 1200
if k is even then e
) o0 3% 505 o 5o
uktl = [u— + log (a) — log (ak)} T— -
-
vhtl = v;‘7 ! " : R
— lu-ulle | 2 — -l
else . 10 10
vkt = [L + log (b) — log (bk)} T ) °
n n+r ° ©
uktl — gk . .
end if ’ ?
k = k + 1 ’ 0 100 200 300 400 50‘ " ¢ 0 100 200 300 400 50
end while

Output: B(uk, vk).

Convergence of Sinkhorn algorithm.
n =0.05,7 =1,n=100.

@ Highly parallelizable.

@ Can observe that the Sinkhorn solutions converge quickly.
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g-approximation

g-approximation
For any € > 0, we call X an e-approximation transportation plan if the
following holds

(C,X) + TKL(X1,||a) + TKL(X "1,||b)
< (C,X) + 7KL(X1,/[a) + TKL(X 1,/b) + ¢,

where X is an optimal transportation plan for the UOT problem.

o Complexity analysis: Seek the value of 1 and corresponding k for
which Sinkhorn algorithm reaches an e-approximate solution.
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Related work on OT

Complexity analysis of OT is rather well-studied:
o Linear programming: O(n3) [Pele and Werman, 2009], O(n®/?) [Lee
and Sidford, 2014]
@ Entropic regularization:

o O(n?/e%) [Altschuler, Weed, and Rigollet, 2017], @ (min (%/4, gé))
[Dvurechenskii et al., 2018], O(n?/€?) [Lin, Ho, and Jordan, 2019a],
O(n"/3/e) [Lin, Ho, and Jordan, 2019b]

e O(n?*5/¢) [Guo, Ho, and Jordan, 2019], O(n?/e) [Jambulapati,
Sidford, and Tian, 2019; Blanchet et al., 2018]

Key challenge with UOT

Previous analyses (e.g. [Chizat et al., 2016], [Sejourne et al., 2019]) have
not addressed the complexity of Sinkhorn algorithm for approximating the
exact UOT solution.
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Our contribution

@ Our contribution is a bound of the number of iterations that Sinkhorn
algorithm requires to reach an e-approximation solution of the UOT
problem.

Main theorem

For = £/O(log(n)) and k = O(1/¢) (total complexity is O(n? /<)), the
update XAk from Sinkhorn algorithm is an e-approximation of the optimal
solution X. )

Remark

Compared to OT, for a similar order of n, we are better than
[Dvurechensky, Gasnikov, and Kroshnin, 2018] by a factor of €, while for a
similar order of ¢, we are better than [Lin, Ho, and Jordan, 2019b] by a
factor of n'/3.
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Convergence rate of the dual solution

For any k > 0, the update (u**1, vk*1) from Sinkhorn algorithm satisfies
the following bound

k
max{||uk+1—U*Hoo,||Vk+1—V*Hoo}S( T ) TR,
T+

where R = max {||log(a)||, ||log(b) || } + max {Iog(n), %HCHoo - Iog(n)}.

v

The dual solution (u*, v

k) has a geometric convergence rate, which
depends explicitly on the number of components n and all other
parameters of masses and penalty function.
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Detailed bound on k

We state the main theorem with quantities S, T, U defined as
1 1 1

slat+B)+5+ Tog(m)’
T— (O‘ + 5) [Iog (O‘ ’ZL 5) + 2log(n) — 1} +log(n) + g T = O((a + §) log(n))

2
4elog(n) 4e(a+ B)log(n)

S= S=0(a+p)

U= max{SJr T,2¢,

}, U = O((a + ) log(n))

Forn= g and k> 1+ (Z¥ + 1) [log (8nR) + log( (7 + 1)) + 3log (¥)], the
update X from Algorithm 1 is an e-approximation of the optimal solution
X.

k= O(*2) log(n)
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Proof sketch of Theorem 2

With the defined k, we will prove that f(X*) — f(X) < & by showing that
F(XK) = £(X) < [g(X*) = g(X")] +n[H(X*) = H(X)| <&,

which comes from the fact that
o g(X¥) —g(X*) <nsS,
@ HIXK)—H(X)< T,

@ and combining these two bounds with the inequality n = § < <=

S+T-
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log iteration

kf: given by our formula; kc: the empirical lower-bound iteration for e-approximation

18 18
—— log k¢ —— K¢/ ke
161 ——e— |og kc 16
14
14
12 3
=
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0
log (1/epsilon)

n=100;« = 2,3 = 4;a;, bj ~ U[0.1, 1]; C;; ~ U[1,50]; ¢ = LinSpace(0.0001, 1)
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Thank you for your attention!
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