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Unbalanced optimal transport: Introduction

1https://optimaltransport.github.io/slides/
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Finding an optimal plan to transport between two
measures with the same mass (OT) or different

masses (UOT) 1.

UOT application: Modeling the growth and the
death of cells [Schiebinger et al., 2019].

UOT application: Image transfer [Yang and Uhler, 2019].



Unbalanced optimal transport: Formulation

a ∈ Rn
+, b ∈ Rm

+ are two non-negative vectors with positive, constant
masses α =

∑
i ai , β =

∑
j bj

C ∈ Rn×m
+ is a non-negative cost matrix

τ is a positive constant

UOT problem
The unbalanced optimal transport (UOT) problem reads

min
X∈Rn×m

+

f (X ) := 〈C ,X 〉+ τKL(X1n||a) + τKL(X>1n||b).

Remark
When α = β and τ →∞, this becomes the standard optimal transport
(OT) problem.
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Entropic UOT

Approximating the UOT problem: replace the positivity constraints
with an entropy barrier H(X ) =

∑n
i ,j=1 Xij(log(Xij)− 1).

Entropic UOT Problem
The entropic UOT problem reads

min
X∈Rn×m

+

g(X ) := 〈C ,X 〉−ηH(X ) + τKL(X1n||a) + τKL(X>1n||b).

Property
For η > 0, the entropic UOT problem is strongly convex.
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Sinkhorn algorithm

Dual function
The solution to the entropic UOT problem is also the optimal solution of
the dual function

min
u,v∈Rn

h(u, v) := η
∑
i ,j

exp
(ui + vj − Cij

η

)
+ τ

〈
e−u/τ , a

〉
+ τ

〈
e−v/τ ,b

〉
.

Let (u∗, v∗) = arg minu,v∈Rn h(u, v), then the solution for the UOT
problem is given by X ∗ = diag(eu∗/η)e

−C
η diag(ev∗/η), where diag(x)

denotes the diagonal matrix with x on the diagonal.
The Sinkhorn algorithm optimizes the dual function by alternating
descent algorithm.
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Denote B(u, v) = diag(eu/η)e
−C
η diag(ev/η).

Algorithm 1: UNBALANCED SINKHORN

Input: marginals a and b, cost matrix C , accuracy ε.
Set k = 0 and u0 = v0 = 0 and a predefined η
while not StoppingCondition(k) do

ak = B(uk , vk )1n.
bk = B(uk , vk )>1n.
if k is even then

uk+1 =
[uk

η
+ log (a)− log

(
ak
)] ητ

η + τ
vk+1 = vk

else
vk+1 =

[ vk

η
+ log (b)− log

(
bk
)] ητ

η + τ
uk+1 = uk .

end if
k = k + 1.

end while
Output: B(uk , vk ).

Highly parallelizable.

Can observe that the Sinkhorn solutions converge quickly.
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Convergence of Sinkhorn algorithm.
η = 0.05, τ = 1, n = 100.



ε-approximation

ε-approximation
For any ε > 0, we call X an ε-approximation transportation plan if the
following holds

〈C ,X 〉+ τKL(X1n||a) + τKL(X>1n||b)

≤
〈
C , X̂

〉
+ τKL(X̂1n||a) + τKL(X̂>1n||b) + ε,

where X̂ is an optimal transportation plan for the UOT problem.

Complexity analysis: Seek the value of η and corresponding k for
which Sinkhorn algorithm reaches an ε-approximate solution.

January 8, 2021 9 / 19



Related work on OT

Complexity analysis of OT is rather well-studied:
Linear programming: Õ(n3) [Pele and Werman, 2009], Õ(n5/2) [Lee
and Sidford, 2014]
Entropic regularization:

Õ(n2/ε3) [Altschuler, Weed, and Rigollet, 2017], Õ
(

min
(

n9/4

ε , n2

ε2

))
[Dvurechenskii et al., 2018], Õ(n2/ε2) [Lin, Ho, and Jordan, 2019a],
Õ(n7/3/ε) [Lin, Ho, and Jordan, 2019b]
Õ(n2.5/ε) [Guo, Ho, and Jordan, 2019], Õ(n2/ε) [Jambulapati,
Sidford, and Tian, 2019; Blanchet et al., 2018]

Key challenge with UOT
Previous analyses (e.g. [Chizat et al., 2016], [Sejourne et al., 2019]) have
not addressed the complexity of Sinkhorn algorithm for approximating the
exact UOT solution.
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Our contribution

Our contribution is a bound of the number of iterations that Sinkhorn
algorithm requires to reach an ε-approximation solution of the UOT
problem.

Main theorem

For η = ε/O(log(n)) and k = Õ(1/ε) (total complexity is Õ(n2/ε)), the
update X k from Sinkhorn algorithm is an ε-approximation of the optimal
solution X̂ .

Remark
Compared to OT, for a similar order of n, we are better than
[Dvurechensky, Gasnikov, and Kroshnin, 2018] by a factor of ε, while for a
similar order of ε, we are better than [Lin, Ho, and Jordan, 2019b] by a
factor of n1/3.
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Convergence rate of the dual solution

Theorem 1
For any k ≥ 0, the update (uk+1, vk+1) from Sinkhorn algorithm satisfies
the following bound

max
{
‖uk+1 − u∗‖∞, ‖vk+1 − v∗‖∞

}
≤
(

τ

τ + η

)k
τR,

where R = max {‖log(a)‖∞, ‖log(b)‖∞}+ max
{

log(n), 1
η‖C‖∞ − log(n)

}
.

Remark
The dual solution (uk , vk) has a geometric convergence rate, which
depends explicitly on the number of components n and all other
parameters of masses and penalty function.

January 8, 2021 13 / 19



Detailed bound on k

We state the main theorem with quantities S,T ,U defined as

S = 1
2(α+ β) + 1

2 + 1
4 log(n) , S = O(α+ β)

T =
(
α+ β

2

)[
log
(
α+ β

2

)
+ 2 log(n)− 1

]
+ log(n) + 5

2 , T = O((α+ β) log(n))

U = max
{

S + T , 2ε, 4ε log(n)
τ

,
4ε(α+ β) log(n)

τ

}
, U = O((α+ β) log(n))

Theorem 2

For η = ε
U and k ≥ 1 +

(
τU
ε + 1

) [
log (8ηR) + log(τ(τ + 1)) + 3 log

(U
ε

)]
, the

update X k from Algorithm 1 is an ε-approximation of the optimal solution
X̂ .

Remark
k = O( τ(α+β)

ε
log(n))
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Proof sketch of Theorem 2

With the defined k, we will prove that f (X k)− f (X̂ ) ≤ ε by showing that

f (X k)− f (X̂ ) ≤
[
g(X k)− g(X ∗)

]
+ η

[
H(X k)− H(X̂ )

]
≤ ε,

which comes from the fact that
g(X k)− g(X ∗) ≤ ηS,
H(X k)− H(X̂ ) ≤ T ,
and combining these two bounds with the inequality η = ε

U ≤
ε

S+T .
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Experiment

kf : given by our formula; kc : the empirical lower-bound iteration for ε-approximation
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n = 100;α = 2, β = 4; ai , bj ∼ U [0.1, 1]; Cij ∼ U [1, 50]; ε = LinSpace(0.0001, 1)
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Thank you for your attention!
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